博客
关于我
一招搞定“C语言声明式”类型的面试题
阅读量:121 次
发布时间:2019-02-26

本文共 3104 字,大约阅读时间需要 10 分钟。

C????????????????????????????????????????????????C??????????????????

C?????????

C?????????????????????????????????????????????????????????????????????????????????????????

  • ??????

    • ????????????
    • ??*?????
    • const?volatile???????????int?long????????????????????
  • ?????

    • ?????????????
    • ????????????????
    • ????????????
    • ????const?volatile???????????
  • ?????????

    ??1?char * const * p;

    • ?????
    • p???????????
    • ???????????char??????
    • p??????????????????

    ??2?char (* c[10])(int **p);

    • ?????
    • c?????10???????
    • ?????????????????????????????
    • ???????int????????char???

    ??????

    ????????????????????????????cdecl.c????C????????????????????????????????????

    ?????

    #include 
    #include
    #include
    #include
    #define MAXTOKENS 100#define MAXTOKENLEN 64enum type_tag { IDENTIFIER, QUALIFIER, TYPE };struct token { char type; char string[MAXTOKENLEN]; };int top = -1;struct token stack[MAXTOKENS];struct token this;#define pop stack[--top]#define push(s) stack[++top] = svoid gettoken() { char *s = this.string; while ((*s = getchar()) == ' ') { if (feof(stdin)) { *s = '\0'; break; } } if (isalnum(*s)) { push(this); while (isalnum(*s = getchar())) { *s = '\0'; } ungetc(*s, stdin); this.type = classify_string(); return; } if (*s == '*') { strcpy(this.string, "pointer to"); this.type = '*'; return; } this.string[1] = '\0'; this.type = *s; return;}void read_to_first_identifier() { gettoken(); while (this.type != IDENTIFIER) { push(this); gettoken(); } printf("%s is ", this.string); gettoken();}void deal_with_arrays() { while (this.type == '[') { printf("array "); gettoken(); if (isdigit(this.string[0])) { printf("0..%d ", atoi(this.string) - 1); gettoken(); } gettoken(); printf("of "); }}void deal_with_function_args() { while (this.type != ')') { gettoken(); } gettoken(); printf("function returning ");}void deal_with_pointers() { while (stack[top].type == '*') { printf("%s ", pop.string); }}void deal_with_declarator() { switch (this.type) { case '[': deal_with_arrays(); break; case '(': deal_with_function_args(); break; } deal_with_pointers(); while (top > 0) { if (stack[top].type == '(') { pop; gettoken(); deal_with_declarator(); } else { printf("%s ", pop.string); } }}int main() { read_to_first_identifier(); deal_with_declarator(); printf("\n"); return 0;}

    ????

    ?????????????????

    char * const * p;char (* c[10])(int **p);

    ???????????

    p is pointer to function returning pointer to charc is array of 10 pointers to function returning pointer to char, function takes pointer to pointer to int and returns pointer to char

    ??

    ???????????????????????????C????????????????????????????????C?????????????????????????????????????????????????????

    ????????????????Expert C Programming??????????????????????????????????????????????????????

    转载地址:http://ldqu.baihongyu.com/

    你可能感兴趣的文章
    Objective-C实现knuth morris pratt(KMP)算法(附完整源码)
    查看>>
    Objective-C实现knuth-morris-pratt(KMP)算法(附完整源码)
    查看>>
    Objective-C实现Koch snowflake科赫雪花曲线算法(附完整源码)
    查看>>
    Objective-C实现koch snowflake科赫雪花算法(附完整源码)
    查看>>
    Objective-C实现KPCA(附完整源码)
    查看>>
    Objective-C实现KruskalMST最小生成树的算法(附完整源码)
    查看>>
    Objective-C实现kruskal克鲁斯卡尔算法(附完整源码)
    查看>>
    Objective-C实现kth order statistick阶统计量算法(附完整源码)
    查看>>
    Objective-C实现lamberts ellipsoidal distance朗伯椭球距离算法(附完整源码)
    查看>>
    Objective-C实现largest AdjacentNumber最大相邻数算法 (附完整源码)
    查看>>
    Objective-C实现largest subarray sum最大子数组和算法(附完整源码)
    查看>>
    Objective-C实现largestPrime最大素数的算法 (附完整源码)
    查看>>
    Objective-C实现lazy segment tree惰性段树算法(附完整源码)
    查看>>
    Objective-C实现LBP特征提取(附完整源码)
    查看>>
    Objective-C实现LDPC码(附完整源码)
    查看>>
    Objective-C实现least common multiple最小公倍数算法(附完整源码)
    查看>>
    Objective-C实现Lempel-Ziv压缩算法(附完整源码)
    查看>>
    Objective-C实现Length conversion长度转换算法(附完整源码)
    查看>>
    Objective-C实现Levenshtein 距离算法(附完整源码)
    查看>>
    Objective-C实现levenshteinDistance字符串编辑距离算法(附完整源码)
    查看>>